Suppose we have an infinite line of dominoes in a row, if we know that
Then it follows that eventually every domino will be knocked down.
The principal of mathematical induction is useful for proving that a certain statement is true for all positive integers.
If we have a propositional function P(n), and we want to prove P(n) is true for any positive integer n, we do the following:
Example: Use mathematical induction to prove the following statement for every positive integer n:
2 + 4 + 6 + ... + 2n = n (n+1)
- Basis Step:
- P(1): 1(1+1) = 2 (base case is true)
- Induction Step:
- If P(k) is \textcolor{red}{2 + 4 + 6 + ... + 2k} = \textcolor{red}{k(k+1)},
- Then P(k+1) is \textcolor{red}{2 + 4 + 6 + ... + 2k} + 2(k+1) \stackrel{?}{=} \textcolor{purple}{(k+1)(k+2)}
- Proving that P(k+1) is true: \begin{aligned} \textcolor{red}{2 + 4 + 6 + ... + 2k} + 2(k+1) &= \textcolor{purple}{(k+1)(k+2)} \\ \textcolor{red}{k(k+1)} + 2(k+1) &= \textcolor{purple}{(k+1)(k+2)} \\ \textcolor{red}{k^2 + k} + 2k + 2 &= \textcolor{purple}{(k+1)(k+2)} \\ k^2 + 3k + 2 &= \textcolor{purple}{(k+1)(k+2)} \\ (k+1)(k+2) &= \textcolor{purple}{(k+1)(k+2)} \\ \end{aligned}
- Conclusion:
- Thus, by mathematical induction, the statement is true for every positive integer n.
Example: Use mathematical induction to prove the following statement for every positive integer n:
5 + 10 + 15 + ... + 5n = \frac{5n(n+1)}{2}
- Basis Step:
- P(1): \frac{5(1)(1+1)}{2} = \frac{5(2)}{2} = 5
- Induction Step:
- P(k): 5 + 10 + 15 + ... + 5k = \frac{5k(k+1)}{2}
- P(k+1): 5 + 10 + 15 + ... + 5k + 5(k+1) = \frac{5(k+1)(k+2)}{2}
- Proving that P(k+1) is true: \begin{aligned} 5 + 10 + 15 + ... + 5k + 5(k+1) &= \frac{5(k+1)(k+2)}{2} \\ \frac{5k(k+1)}{2} + 5(k+1) &= \frac{5(k+1)(k+2)}{2} \\ \frac{5k(k+1)}{2} + \frac{10(k+1)}{2} &= \frac{5(k+1)(k+2)}{2} \\ \frac{5k(k+1) + 10(k+1)}{2} &= \frac{5(k+1)(k+2)}{2} \\ \frac{(k+1)(5k + 10)}{2} &= \frac{5(k+1)(k+2)}{2} \\ \frac{5(k+1)(k + 2)}{2} &= \frac{5(k+1)(k+2)}{2} \\ \end{aligned}
- Conclusion:
- Thus, by mathematical induction, the statement is true for every positive integer n.
Example: Use mathematical induction to prove the following statement for every positive integer n:
1^3 + 2^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}
- Basis Step:
- P(1): \frac{1^2 (1+1)^2}{4}
- Induction Step:
- P(k): 1^3 + 2^3 + ... + k^3 = \frac{k^2 (k+1)^2}{4}
- P(k+1): 1^3 + 2^3 + ... + k^3 + (k+1)^3 = \frac{(k+1)^2 (k+2)^2}{4}
- Proving that P(k+1) is true: \begin{aligned} 1^3 + 2^3 + ... + k^3 + (k+1)^3 &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{k^2 (k+1)^2}{4} + (k+1)^3 &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{k^2 (k+1)^2}{4} + \frac{4(k+1)^3}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{k^2 (k+1)^2 + 4(k+1)^3}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{(k+1)^2 [ k^2 + 4(k+1) ]}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{(k+1)^2 ( k^2 + 4k + 4 )}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\ \frac{(k+1)^2 (k+2)^2}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \end{aligned}
- Conclusion:
- Thus, by mathematical induction, the statement is true for every positive integer n.
Example: Show than n<2^n for all positive integers n
- Basis Step: The proposition function is P(n)=n<2^n \begin{aligned} P(n)&:n<2^n \\ P(1)&:1<2^1 \\ P(1)&:1<2 \text{ (true, basis step verified)} \\ \end{aligned}
- Induction Step:
Assume P(k): k < 2^k to prove P(k+1): k+1 < 2^{k+1}:\begin{aligned} k + 1 < 2^k + 1 \le 2^k + 2k = 2^{k+1} \end{aligned}
- Therefore, P(k+1) is true. If k < 2^k, then k+1 < 2^{k+1}
- Then P(n) must be true for any positive integer n.
Example: Prove that 1+2+2^2 + ... + 2^n = 2^{n+1} - 1 for any n \ge 1
- When n=1:
- LHS is 1+2=3
- RHS is 2^2 -1 = 3
- Assume k is true.
P(k): 1 + 2 + 2^k + ... + 2^k = 2^{k+1} - 1
- Goal: Show P(k+1) is true
\begin{align*} \text{ LHS: }& 1 + 2 + 2^n + ... + 2^k + 2^{k+1} \\ \text{ RHS: }& 2^{k+1+1} - 1 \end{align*}
- Making LHS match RHS: \begin{align*} LHS &= 1 + 2 + 2^n + ... + 2^k + 2^{k+1} \\ &= 2^{k+1} - 1 + 2^{k+1} \\ &= 2^1 * 2^{k+1} -1 \\ &= 2^{k+2} - 1 \\ &= 2^{k+1+1} - 1 \\ &= RHS \end{align*}
- Therefore, the statement is true.
When assuming P(k) isn’t enough to prove P(k+1), use an extended version of basic induction proof: The second principle.
Second Principle: P(1) \text{ is true} \\ P(1) \land P(2) \land ... \to P(k+1) \text{ is true}
Example: Prove that the amount of postage greater than or equal to 8 cents can be built using only 3-cent and 5-cent stamps.
Using the second principle of induction, we have to prove that P(n) is true for n \ge 8 where P(n) is that n cents worth of postage can be built using only 3-cent and 5-cent stamps.
Assuming k can be built with 3’s and 5’s, we want to prove k+1
Base Cases: p(8) = 3 + 5 \\ p(9) = 3 + 3 + 3 \\ p(10) = 5 + 5
To get 11, 12, 13, we can just add 3 to 8, 9, and 10-case, respectively.
- By proving p(9) and p(10), we’ve proven P(k+1)
Therefore, for any n \ge 8, n cents worth of postage can be built using only 3-cent and 5-cent stamps.